S2 Cheat Sheet

Mathematics (9709)
Eve
Jul 15, 2025

Sampling and Estimation

Central Limit Theorem (CLT) – For the sample mean (when it's not stated to be normally distributed and nn is large, n>1n > 1), we use the CLT to assume it's normally distributed.

z=xˉμσnz = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}
  • xˉ\bar{x} = sample mean
  • E(xˉ)=μE(\bar{x}) = \mu = population mean
  • Var(xˉ)=σ2nVar(\bar{x}) = \frac{\sigma^2}{n} = sample variance

Unbiased Estimator

μ=Σxn\mu = \frac{\Sigma x}{n} Var(x)=1n1(Σx2(Σx)2n)=s2Var(x) = \frac{1}{n - 1} \left( \Sigma x^2 - \frac{(\Sigma x)^2}{n} \right) = s^2

Confidence Interval

The region which has the highest probability of containing the population mean.

μ=xˉ±zσn\mu = \bar{x} \pm z \cdot \frac{\sigma}{\sqrt{n}} xˉzσn<μ<xˉ+zσn\bar{x} - z \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} [xˉzσn, xˉ+zσn]\left[ \bar{x} - z \cdot \frac{\sigma}{\sqrt{n}} ,\ \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} \right]

Confidence Interval for the Proportion pp

p±zp(1p)np \pm z \cdot \sqrt{ \frac{p(1 - p)}{n} } Width=2zp(1p)n\text{Width} = 2z \cdot \sqrt{ \frac{p(1 - p)}{n} }

Linear Combinations of Random Variables

E(aX+b)=aE(X)+bE(aX + b) = aE(X) + b Var(aX+b)=a2Var(X)Var(aX + b) = a^2 \cdot Var(X) E(aX±bY)=aE(X)±bE(Y)E(aX \pm bY) = aE(X) \pm bE(Y) Var(aX±bY)=a2Var(X)+b2Var(Y)Var(aX \pm bY) = a^2 \cdot Var(X) + b^2 \cdot Var(Y)

Note:

  • Only square the coefficient when calculating variance if its Var(X)=12Var(Y)Var(X) = \frac{1}{2} Var(Y)Square the 1/2
  • Do not square for Var(2X+2Y)Var(2X + 2Y)

Hypothesis Testing

H0H_0Null hypothesis, the initial assumption
H1H_1Alternate hypothesis, when H0H_0 is rejected, H1H_1 is accepted

Significance level (α\alpha)The probability of rejecting the H0H_0

  • The lower the α\alpha, the smaller the rejection region and the more confident you can be in the result

If probability H1H_1 < α\alpha

  1. It is significant
  2. There is sufficient evidence to reject H0H_0
  3. The argument is right

Type I error – When H0H_0 is rejected despite being correct

Type II error – When H1H_1 is rejected; HoH_o is false but accepted

One-tailed testp<αp < \alpha or p>αp > \alpha

  • Directional: fewer / greater

Two-tailed testpαp \neq \alpha or μa\mu \neq a

  • Non-directional: different from
  • Divide the significance level α\alpha by 2

Critical Region- Probability of Type I error

Poisson Distribution

XPo(λ)X \sim P_o(\lambda) P(X=n)=eλλnn!P(X = n) = \frac{e^{-\lambda} \lambda^n}{n!} μ=σ2=λ\mu = \sigma^2 = \lambda

Conditions

  1. Common rate of occurrences with a parameter value of λ\lambda
  2. Events occur singly and randomly
  3. Events are independent
  4. Rate of occurrence is proportional to events/duration

Half Continuity Correction

Used when approximating a Binomial/Poisson distribution to Normal distribution:

  • x>6x>6.5x > 6 \rightarrow x > 6.5
  • x<6x<5.5x < 6 \rightarrow x < 5.5
  • x6x>5.5x \ge 6 \rightarrow x > 5.5
  • x6x<6.5x \le 6 \rightarrow x < 6.5
  • x=65.5<x<6.5x = 6 \rightarrow 5.5 < x < 6.5

Continuous Random Variables

  • Random variable xx takes any value within an interval

Properties of a PDF (Probability Density Function)

  1. No negative value of f(x)f(x)
  2. Total area must be 1
  3. The interval is restricted, any other region, probability is zero (0 otherwise)
Probability between a and b:abf(x)dx\text{Probability between } a \text{ and } b: \quad \int_{a}^{b} f(x)\, dx P(x>a)=1P(x<a)P(x > a) = 1 - P(x < a) E(x)=abxf(x)dxE(x) = \int_{a}^{b} x f(x)\, dx Var(x)=abx2f(x)dxVar(x) = \int_{a}^{b} x^2 f(x)\, dx Modex value that gives the highest y-value\text{Mode} \rightarrow x \text{ value that gives the highest } y\text{-value} Q1 (Lower Quartile):aQ1f(x)dx=14Q_1\ (\text{Lower Quartile}): \quad \int_{a}^{Q_1} f(x)\, dx = \frac{1}{4} M (Median):aMf(x)dx=12M\ (\text{Median}): \quad \int_{a}^{M} f(x)\, dx = \frac{1}{2} Q3 (Upper Quartile):aQ3f(x)dx=34Q_3\ (\text{Upper Quartile}): \quad \int_{a}^{Q_3} f(x)\, dx = \frac{3}{4}
Resource Author
Eve

Eve

Resource Creator

Created:

Jul 15, 2025

Updated:

Sep 1, 2025

IMPORTANT: All topical worksheets generated before August 01, 2025 will be deleted in 24 hours. Please recover any worksheets you will need before this.