Group 17 Reactions
Reaction with Hydrogen:
H 2 + F 2 ⟶ 2 H F ( g ) H_2 + F_2 \longrightarrow 2HF_{(g)}H 2 + F 2 ⟶ 2 H F ( g ) (Explosive reaction)
H 2 + C l 2 ⟶ 2 H C l ( g ) H_2 + Cl_2 \longrightarrow 2HCl_{(g)}H 2 + C l 2 ⟶ 2 H C l ( g ) (Very fast reaction, can explode in sunlight)
H 2 + B r 2 ⟶ 2 H B r ( g ) H_2 + Br_2 \longrightarrow 2HBr_{(g)}H 2 + B r 2 ⟶ 2 H B r ( g ) (Slow reaction)
H 2 + I 2 → H e a t a t 300 ∘ C , P t c a t a l y s t 2 H I ( g ) H_2 + I_2 \xrightarrow{Heat \ at \ 300^\circ C, Pt \ catalyst} 2HI_{(g)}H 2 + I 2 He a t a t 30 0 ∘ C , Pt c a t a l ys t 2 H I ( g ) (Very slow reaction, requires strong heating)
Decomposition of Hydrogen Halides:
HF: No reaction
HCl: No reaction
2 H B r → h e a t H 2 ( g ) + B r 2 ( g ) 2HBr \xrightarrow{heat} H_{2(g)} + Br_{2(g)}2 H B r h e a t H 2 ( g ) + B r 2 ( g ) (Red-brown vapor of Bromine seen)
2 H I → h o t g l a s s r o d H 2 ( g ) + I 2 ( g ) 2HI \xrightarrow{hot \ glass \ rod} H_{2(g)} + I_{2(g)}2 H I h o t g l a ss ro d H 2 ( g ) + I 2 ( g ) (Purple vapor of Iodine seen)
Note: Stability of hydrogen halides decreases down the group
Oxidizing and Reducing Agent Theory:
Oxidizing power decreases down the group: F > C l > B r > I F > Cl > Br > IF > Cl > B r > I
Reducing power increases down the group: I − > B r − > C l − > F − I^- > Br^- > Cl^- > F^-I − > B r − > C l − > F −
F + e − ⟶ F − F + e^- \longrightarrow F^-F + e − ⟶ F − (Reducing agent)
C l + e − ⟶ C l − Cl + e^- \longrightarrow Cl^-Cl + e − ⟶ C l − (Reducing agent)
B r + e − ⟶ B r − Br + e^- \longrightarrow Br^-B r + e − ⟶ B r − (Reducing agent)
I + e − ⟶ I − I + e^- \longrightarrow I^-I + e − ⟶ I − (Reducing agent)
Reactions with Concentrated Sulfuric Acid
N a C l + H 2 S O 4 ⟶ N a H S O 4 + H C l NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HClN a Cl + H 2 S O 4 ⟶ N a H S O 4 + H Cl (No further reaction)
2 N a B r + H 2 S O 4 ⟶ N a H S O 4 + H B r 2NaBr + H_2SO_4 \longrightarrow NaHSO_4 + HBr2 N a B r + H 2 S O 4 ⟶ N a H S O 4 + H B r
2 H B r + H 2 S O 4 ⟶ B r 2 + S O 2 + 2 H 2 O 2HBr + H_2SO_4 \longrightarrow Br_2 + SO_2 + 2H_2O2 H B r + H 2 S O 4 ⟶ B r 2 + S O 2 + 2 H 2 O
2 N a I + H 2 S O 4 ⟶ N a H S O 4 + H I 2NaI + H_2SO_4 \longrightarrow NaHSO_4 + HI2 N a I + H 2 S O 4 ⟶ N a H S O 4 + H I
8 H I + H 2 S O 4 ⟶ 4 I 2 + H 2 S + 4 H 2 O 8HI + H_2SO_4 \longrightarrow 4I_2 + H_2S + 4H_2O8 H I + H 2 S O 4 ⟶ 4 I 2 + H 2 S + 4 H 2 O
Observations:
HCl, HBr, and HI are white fumes
B r 2 Br_2B r 2 is a red-brown gas
I 2 I_2I 2 is a purple gas
H 2 S H_2SH 2 S has a rotten-egg smell
Reaction of C l 2 Cl_2C l 2 with NaOH (Disproportionation)
C l 2 + 2 N a O H ( a q ) → 15 ∘ C ( c o l d ) N a C l + N a C l O + H 2 O Cl_2 + 2NaOH_{(aq)} \xrightarrow{15^\circ C \ (cold)} NaCl + NaClO + H_2OC l 2 + 2 N a O H ( a q ) 1 5 ∘ C ( co l d ) N a Cl + N a ClO + H 2 O
3 C l 2 + 6 N a O H ( a q ) → 70 ∘ C ( h o t ) 5 N a C l + N a C l O 3 + 3 H 2 O 3Cl_2 + 6NaOH_{(aq)} \xrightarrow{70^\circ C \ (hot)} 5NaCl + NaClO_3 + 3H_2O3 C l 2 + 6 N a O H ( a q ) 7 0 ∘ C ( h o t ) 5 N a Cl + N a Cl O 3 + 3 H 2 O
Identification of Halogens
A g N O 3 AgNO_3A g N O 3 added to solutions of halides:
NaCl: White precipitate
NaBr: Cream precipitate
NaI: Yellow precipitate
Solubility in dilute and concentrated N H 3 NH_3N H 3 :
NaCl: Soluble
NaBr: Partially soluble
NaI: Insoluble
Reaction of Halides with N H 3 NH_3N H 3
A g C l + 2 N H 3 ⟶ [ A g ( N H 3 ) 2 ] + C l − AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+Cl^-A g Cl + 2 N H 3 ⟶ [ A g ( N H 3 ) 2 ] + C l − (Soluble)
A g B r + 2 N H 3 ⟶ [ A g ( N H 3 ) 2 ] + B r − AgBr + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+Br^-A g B r + 2 N H 3 ⟶ [ A g ( N H 3 ) 2 ] + B r − (Partially soluble)
Water Chlorination
C l 2 + H 2 O ⟶ H O C l + H C l Cl_2 + H_2O \longrightarrow HOCl + HClC l 2 + H 2 O ⟶ H OCl + H Cl (Hypochlorous acid kills bacteria)
Displacement Reactions
2 N a B r + C l 2 ⟶ 2 N a C l + B r 2 2NaBr + Cl_2 \longrightarrow 2NaCl + Br_22 N a B r + C l 2 ⟶ 2 N a Cl + B r 2
2 N a I + C l 2 ⟶ 2 N a C l + I 2 2NaI + Cl_2 \longrightarrow 2NaCl + I_22 N a I + C l 2 ⟶ 2 N a Cl + I 2
2 N a I + B r 2 ⟶ 2 N a B r + I 2 2NaI + Br_2 \longrightarrow 2NaBr + I_22 N a I + B r 2 ⟶ 2 N a B r + I 2
Alkanes
Combustion:
Complete: C H 4 + 2 O 2 ⟶ C O 2 + 2 H 2 O CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2OC H 4 + 2 O 2 ⟶ C O 2 + 2 H 2 O
Incomplete: C H 4 + 3 2 O 2 ⟶ C O + 2 H 2 O CH_4 + \frac{3}{2}O_2 \longrightarrow CO + 2H_2OC H 4 + 2 3 O 2 ⟶ CO + 2 H 2 O C H 4 + O 2 ⟶ C + 2 H 2 O CH_4 + O_2 \longrightarrow C + 2H_2OC H 4 + O 2 ⟶ C + 2 H 2 O
Cracking:
Catalytic Cracking: C 6 H 14 → 500 ∘ C , A l 2 O 3 , S i O 2 C 2 H 4 + H 2 C_6H_{14} \xrightarrow{500^\circ C, Al_2O_3, SiO_2} C_2H_4 + H_2C 6 H 14 50 0 ∘ C , A l 2 O 3 , S i O 2 C 2 H 4 + H 2
Thermal Cracking: C 5 H 12 → 800 ∘ C , H i g h p r e s s u r e C 2 H 4 + C 3 H 8 C_5H_{12} \xrightarrow{800^\circ C, High \ pressure} C_2H_4 + C_3H_8C 5 H 12 80 0 ∘ C , H i g h p ress u re C 2 H 4 + C 3 H 8
Free Radical Substitution:
Conditions: UV Light, Halogens
Initiation: C l 2 ⟶ 2 C l ⋅ Cl_2 \longrightarrow 2Cl\cdotC l 2 ⟶ 2 Cl ⋅
Propagation: C H 4 + C l ⋅ ⟶ C H 3 ⋅ + H C l CH_4 + Cl\cdot \longrightarrow CH_3\cdot + HClC H 4 + Cl ⋅ ⟶ C H 3 ⋅ + H Cl C H 3 ⋅ + C l 2 ⟶ C H 3 C l + C l ⋅ CH_3\cdot + Cl_2 \longrightarrow CH_3Cl + Cl\cdotC H 3 ⋅ + C l 2 ⟶ C H 3 Cl + Cl ⋅
Termination: C l ⋅ + C l ⋅ ⟶ C l 2 Cl\cdot + Cl\cdot \longrightarrow Cl_2Cl ⋅ + Cl ⋅ ⟶ C l 2 , C l ⋅ + C H 3 ⋅ ⟶ C H 3 C l Cl\cdot + CH_3\cdot \longrightarrow CH_3ClCl ⋅ + C H 3 ⋅ ⟶ C H 3 Cl , C H 3 ⋅ + C H 3 ⋅ ⟶ C 2 H 6 CH_3\cdot + CH_3\cdot \longrightarrow C_2H_6C H 3 ⋅ + C H 3 ⋅ ⟶ C 2 H 6
Alkenes
Formation: Cracking, Elimination of Alkyl Halides, Dehydration of Alcohols
Reactions with Halogens:
Electrophilic Addition of Halogens: C 2 H 4 + B r 2 ( l ) ⟶ C 2 H 4 B r 2 C_2H_4 + Br_{2(l)} \longrightarrow C_2H_4Br_2C 2 H 4 + B r 2 ( l ) ⟶ C 2 H 4 B r 2 (Room temperature and dark conditions)
Reactions with Hydrogen Halides:
Electrophilic Addition of Hydrogen Halides: C 2 H 4 + H B r ⟶ C 2 H 5 B r C_2H_4 + HBr \longrightarrow C_2H_5BrC 2 H 4 + H B r ⟶ C 2 H 5 B r (Room temperature, Markovnikov's Rule applies)
Electrophilic Addition of Hydrogen (Hydrogenation):
C 2 H 4 + H 2 → 140 ∘ C , N i c a t a l y s t C 2 H 6 C_2H_4 + H_2 \xrightarrow{140^\circ C, Ni \ catalyst} C_2H_6C 2 H 4 + H 2 14 0 ∘ C , N i c a t a l ys t C 2 H 6
C 2 H 4 + H 2 → R o o m T e m p . , P t / P d c a t a l y s t C 2 H 6 C_2H_4 + H_2 \xrightarrow{Room \ Temp., Pt/Pd \ catalyst} C_2H_6C 2 H 4 + H 2 R oo m T e m p . , Pt / P d c a t a l ys t C 2 H 6
Electrophilic Addition of Bromine (Bromine Water Test) :
C H 2 = C H 2 + B r 2 ( a q ) ⟶ C H 2 B r C H 2 O H + H B r CH_2=CH_2 + Br_{2(aq)} \longrightarrow CH_2BrCH_2OH + HBrC H 2 = C H 2 + B r 2 ( a q ) ⟶ C H 2 B r C H 2 O H + H B r (Color change from brown to colorless when hydrocarbon is saturated)
Electrophilic Addition of H 2 O H_2OH 2 O (Hydration):
C H 2 = C H 2 + H 2 O → 300 ∘ C , 10 a t m p r e s s u r e , H 3 P O 4 c a t a l y s t C H 3 C H 2 O H CH_2=CH_2 + H_2O \xrightarrow{300^\circ C, 10 \ atm \ pressure, H_3PO_4 \ catalyst} CH_3CH_2OHC H 2 = C H 2 + H 2 O 30 0 ∘ C , 10 a t m p ress u re , H 3 P O 4 c a t a l ys t C H 3 C H 2 O H
Combustion:
Complete: C 2 H 4 + 3 O 2 ⟶ 2 C O 2 + 2 H 2 O C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2OC 2 H 4 + 3 O 2 ⟶ 2 C O 2 + 2 H 2 O
Incomplete: C 2 H 4 + 2 O 2 ⟶ 2 C O + 2 H 2 O C_2H_4 + 2O_2 \longrightarrow 2CO + 2H_2OC 2 H 4 + 2 O 2 ⟶ 2 CO + 2 H 2 O , C 2 H 4 + O 2 ⟶ 2 C + 2 H 2 O C_2H_4 + O_2 \longrightarrow 2C + 2H_2OC 2 H 4 + O 2 ⟶ 2 C + 2 H 2 O
Oxidation:
Mild Oxidation: C H 2 = C H 2 → C o l d , d i l u t e , a c i d i f i e d K M n O 4 C H 2 O H C H 2 O H CH_2=CH_2 \xrightarrow{Cold, dilute, acidified \ KMnO_4} CH_2OHCH_2OHC H 2 = C H 2 C o l d , d i l u t e , a c i d i f i e d K M n O 4 C H 2 O H C H 2 O H
Strong Oxidation: (Hot, concentrated, acidified K M n O 4 KMnO_4K M n O 4 ) yields carbonyl compounds
Alkyl Halides
Formation:
Free Radical Substitution of Alkanes
Electrophilic Addition of Hydrogen Halides
Electrophilic Addition of Halogens
Nucleophilic Substitution of Alcohols (Bromination, Chlorination)
Nucleophilic Substitution:
S N 1 S_N1S N 1 (Unimolecular) - Tertiary Alkyl Halides
Mechanism: See source for a diagram of the mechanism.
S N 2 S_N2S N 2 (Bimolecular) - Primary Alkyl Halides *Mechanism: See source for a diagram of the mechanism.
Conditions: NaOH, Heat, Aqueous conditions
Nucleophilic Substitution of N H 3 NH_3N H 3 :
C H 3 C H 2 B r + N H 3 ⟶ C H 3 C H 2 N H 2 + H B r CH_3CH_2Br + NH_3 \longrightarrow CH_3CH_2NH_2 + HBrC H 3 C H 2 B r + N H 3 ⟶ C H 3 C H 2 N H 2 + H B r
C H 3 C H 2 B r + C H 3 C H 2 N H 2 ⟶ C H 3 C H 2 N H C H 2 C H 3 + H B r CH_3CH_2Br + CH_3CH_2NH_2 \longrightarrow CH_3CH_2NHCH_2CH_3 + HBrC H 3 C H 2 B r + C H 3 C H 2 N H 2 ⟶ C H 3 C H 2 N H C H 2 C H 3 + H B r
C H 3 C H 2 B r + C H 3 C H 2 N H C H 2 C H 3 ⟶ C H 3 C H 2 − N + − ( C H 2 C H 3 ) 2 + H B r CH_3CH_2Br + CH_3CH_2NHCH_2CH_3 \longrightarrow CH_3CH_2 -N^+ -(CH_2CH_3)_2 + HBrC H 3 C H 2 B r + C H 3 C H 2 N H C H 2 C H 3 ⟶ C H 3 C H 2 − N + − ( C H 2 C H 3 ) 2 + H B r
C H 3 C H 2 − N + − ( C H 2 C H 3 ) 2 + C H 3 C H 2 B r ⟶ [ C H 3 C H 2 − N + − ( C H 2 C H 3 ) 3 ] B r − CH_3CH_2 -N^+ -(CH_2CH_3)_2 + CH_3CH_2Br \longrightarrow [CH_3CH_2-N^+ -(CH_2CH_3)_3]Br^-C H 3 C H 2 − N + − ( C H 2 C H 3 ) 2 + C H 3 C H 2 B r ⟶ [ C H 3 C H 2 − N + − ( C H 2 C H 3 ) 3 ] B r −
Conditions: Ethanol as solvent, Heat
Nucleophilic Substitution by NaCN:
C H 3 C H 2 B r + N a C N ⟶ C H 3 C H 2 C N + N a B r CH_3CH_2Br + NaCN \longrightarrow CH_3CH_2CN + NaBrC H 3 C H 2 B r + N a CN ⟶ C H 3 C H 2 CN + N a B r (Forms propanenitrile)
Conditions: Ethanol as solvent, Heat
Elimination of Alkyl Halides
Conditions: NaOH as reagent, Heat, Ethanol as solvent
Primary: C H 3 C H 2 B r + N a O H ⟶ C H 2 = C H 2 + H 2 O + N a B r CH_3CH_2Br + NaOH \longrightarrow CH_2=CH_2 + H_2O + NaBrC H 3 C H 2 B r + N a O H ⟶ C H 2 = C H 2 + H 2 O + N a B r
Tertiary: C ( C H 3 ) 3 B r + N a O H ⟶ ( C H 3 ) 2 C = C H 2 + H 2 O + N a B r C(CH_3)_3Br + NaOH \longrightarrow (CH_3)_2C=CH_2 + H_2O + NaBrC ( C H 3 ) 3 B r + N a O H ⟶ ( C H 3 ) 2 C = C H 2 + H 2 O + N a B r
Secondary: (Mechanism): See source for a diagram of the mechanism. Forms 3 products : transbut-2-ene (33%), cisbut-2-ene (33%) and but-1-ene (33%).
Period 3 Elements
Combustion:
4 N a + O 2 ⟶ 2 N a 2 O 4Na + O_2 \longrightarrow 2Na_2O4 N a + O 2 ⟶ 2 N a 2 O (Burns with yellow flame)
2 M g + O 2 ⟶ 2 M g O 2Mg + O_2 \longrightarrow 2MgO2 M g + O 2 ⟶ 2 M g O (Burns with intense white flame)
4 A l + 3 O 2 ⟶ 2 A l 2 O 3 4Al + 3O_2 \longrightarrow 2Al_2O_34 A l + 3 O 2 ⟶ 2 A l 2 O 3 (Burns with yellow or white flame, Insoluble oxide)
S i + O 2 ⟶ S i O 2 Si + O_2 \longrightarrow SiO_2S i + O 2 ⟶ S i O 2 (Burns with yellow flame, Insoluble oxide)
4 P + 3 O 2 ⟶ P 4 O 6 4P + 3O_2 \longrightarrow P_4O_64 P + 3 O 2 ⟶ P 4 O 6 4 P + 5 O 2 ⟶ P 4 O 10 4P + 5O_2 \longrightarrow P_4O_{10}4 P + 5 O 2 ⟶ P 4 O 10 (Burns with white flame)
S + O 2 ⟶ S O 2 S + O_2 \longrightarrow SO_2S + O 2 ⟶ S O 2 (Burns with blue flame)
2 S O 2 + O 2 → V a n a d i u m ( V ) o x i d e 2 S O 3 2SO_2 + O_2 \xrightarrow{Vanadium(V) \ oxide} 2SO_32 S O 2 + O 2 Vana d i u m ( V ) o x i d e 2 S O 3 S O 3 + H 2 O ⟶ H 2 S O 4 SO_3 + H_2O \longrightarrow H_2SO_4S O 3 + H 2 O ⟶ H 2 S O 4
Reaction of Period 3 Oxides with Water:
N a 2 O + H 2 O ⟶ 2 N a O H Na_2O + H_2O \longrightarrow 2NaOHN a 2 O + H 2 O ⟶ 2 N a O H (pH = 13-14)
M g O + H 2 O ⟶ M g ( O H ) 2 MgO + H_2O \longrightarrow Mg(OH)_2M g O + H 2 O ⟶ M g ( O H ) 2 (pH = 9, slightly soluble)
A l 2 O 3 + H 2 O ⟶ Al_2O_3 + H_2O \longrightarrowA l 2 O 3 + H 2 O ⟶ No reaction (Insoluble)
S i O 2 + H 2 O ⟶ SiO_2 + H_2O \longrightarrowS i O 2 + H 2 O ⟶ No reaction (Insoluble)
P 4 O 10 + 6 H 2 O ⟶ 4 H 3 P O 4 P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4P 4 O 10 + 6 H 2 O ⟶ 4 H 3 P O 4 (pH = 2)
P 4 O 6 + 6 H 2 O ⟶ 4 H 3 P O 3 P_4O_{6} + 6H_2O \longrightarrow 4H_3PO_3P 4 O 6 + 6 H 2 O ⟶ 4 H 3 P O 3 (pH = 2)
S O 2 + H 2 O ⟶ H 2 S O 3 SO_2 + H_2O \longrightarrow H_2SO_3S O 2 + H 2 O ⟶ H 2 S O 3 (pH = 1) S O 3 + H 2 O ⟶ H 2 S O 4 SO_3 + H_2O \longrightarrow H_2SO_4S O 3 + H 2 O ⟶ H 2 S O 4 (pH = 1)
C l 2 O + H 2 O ⟶ 2 H O C l Cl_2O + H_2O \longrightarrow 2HOClC l 2 O + H 2 O ⟶ 2 H OCl
C l 2 O 7 + H 2 O ⟶ 2 H C l O 4 Cl_2O_7 + H_2O \longrightarrow 2HClO_4C l 2 O 7 + H 2 O ⟶ 2 H Cl O 4
Neutralization of Period 3 Oxides:
Basic Oxides: N a 2 O + 2 H C l ⟶ 2 N a C l + H 2 O Na_2O + 2HCl \longrightarrow 2NaCl + H_2ON a 2 O + 2 H Cl ⟶ 2 N a Cl + H 2 O and M g O + 2 H C l ⟶ M g C l 2 + H 2 O MgO + 2HCl \longrightarrow MgCl_2 + H_2OM g O + 2 H Cl ⟶ M g C l 2 + H 2 O
Amphoteric Oxide: A l 2 O 3 + 6 H C l ⟶ 2 A l C l 3 + 3 H 2 O Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2OA l 2 O 3 + 6 H Cl ⟶ 2 A lC l 3 + 3 H 2 O and A l 2 O 3 + 2 N a O H + 3 H 2 O ⟶ 2 N a A l ( O H ) 4 Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2NaAl(OH)_4A l 2 O 3 + 2 N a O H + 3 H 2 O ⟶ 2 N a A l ( O H ) 4
Acidic Oxides: S i O 2 + 2 N a O H ⟶ N a 2 S i O 3 + H 2 O SiO_2 + 2NaOH \longrightarrow Na_2SiO_3 + H_2OS i O 2 + 2 N a O H ⟶ N a 2 S i O 3 + H 2 O , P 4 O 10 + 12 N a O H ⟶ 4 N a 3 P O 4 + 6 H 2 O P_4O_{10} + 12NaOH \longrightarrow 4Na_3PO_4 + 6H_2OP 4 O 10 + 12 N a O H ⟶ 4 N a 3 P O 4 + 6 H 2 O , S O 2 + 2 N a O H ⟶ N a 2 S O 3 + H 2 O SO_2 + 2NaOH \longrightarrow Na_2SO_3 + H_2OS O 2 + 2 N a O H ⟶ N a 2 S O 3 + H 2 O , S O 3 + 2 N a O H ⟶ N a 2 S O 4 + H 2 O SO_3 + 2NaOH \longrightarrow Na_2SO_4 + H_2OS O 3 + 2 N a O H ⟶ N a 2 S O 4 + H 2 O , C l 2 O 7 + 2 N a O H ⟶ 2 N a C l O 4 + H 2 O Cl_2O_7 + 2NaOH \longrightarrow 2NaClO_4 + H_2OC l 2 O 7 + 2 N a O H ⟶ 2 N a Cl O 4 + H 2 O
Reaction of Period 3 elements with C l 2 Cl_2C l 2 :
2 N a + C l 2 ⟶ 2 N a C l 2Na + Cl_2 \longrightarrow 2NaCl2 N a + C l 2 ⟶ 2 N a Cl (Burns with orange flame, white solid formed)
M g + C l 2 ⟶ M g C l 2 Mg + Cl_2 \longrightarrow MgCl_2M g + C l 2 ⟶ M g C l 2 (Burns with intense white flame)
2 A l + 3 C l 2 → R o o m T e m p 2 A l C l 3 2Al + 3Cl_2 \xrightarrow{Room \ Temp} 2AlCl_32 A l + 3 C l 2 R oo m T e m p 2 A lC l 3
2 A l + 3 C l 2 → H e a t A l 2 C l 6 ( g ) 2Al + 3Cl_2 \xrightarrow{Heat} Al_2Cl_6(g)2 A l + 3 C l 2 He a t A l 2 C l 6 ( g ) (Dimer)
S i + 2 C l 2 → H e a t S i C l 4 ( l ) Si + 2Cl_2 \xrightarrow{Heat} SiCl_4(l)S i + 2 C l 2 He a t S i C l 4 ( l ) (Covalent colorless liquid)
2 P + 3 C l 2 → H e a t 2 P C l 3 2P + 3Cl_2 \xrightarrow{Heat} 2PCl_32 P + 3 C l 2 He a t 2 PC l 3 (Covalent colorless liquid)
P C l 3 + C l 2 ⟶ P C l 5 PCl_3 + Cl_2 \longrightarrow PCl_5PC l 3 + C l 2 ⟶ PC l 5 (White solid)
2 S + C l 2 ⟶ S 2 C l 2 2S + Cl_2 \longrightarrow S_2Cl_22 S + C l 2 ⟶ S 2 C l 2 (Orange liquid with a bad smell)
Period 3 Chlorides in H 2 O H_2OH 2 O :
N a C l ( a q ) ⟶ N a ( a q ) + + C l ( a q ) − NaCl_{(aq)} \longrightarrow Na^+_{(aq)} + Cl^-_{(aq)}N a C l ( a q ) ⟶ N a ( a q ) + + C l ( a q ) − (pH = 7)
M g C l 2 + 6 H 2 O ⟶ [ M g ( H 2 O ) 6 ] ( a q ) 2 + + 2 C l ( a q ) − MgCl_2 + 6H_2O \longrightarrow [Mg(H_2O)_6]^{2+}_{(aq)} + 2Cl^-_{(aq)}M g C l 2 + 6 H 2 O ⟶ [ M g ( H 2 O ) 6 ] ( a q ) 2 + + 2 C l ( a q ) − , [ M g ( H 2 O ) 6 ] ( a q ) 2 + ⟶ [ M g ( H 2 O ) 5 O H ] ( a q ) + + H ( a q ) + [Mg(H_2O)_6]^{2+}_{(aq)} \longrightarrow [Mg(H_2O)_5OH]^+_{(aq)} + H^+_{(aq)}[ M g ( H 2 O ) 6 ] ( a q ) 2 + ⟶ [ M g ( H 2 O ) 5 O H ] ( a q ) + + H ( a q ) + (pH = 6.5)
A l C l 3 + 6 H 2 O ⟶ [ A l ( H 2 O ) 6 ] ( a q ) 3 + + 3 C l ( a q ) − AlCl_3 + 6H_2O \longrightarrow [Al(H_2O)_6]^{3+}_{(aq)} + 3Cl^-_{(aq)}A lC l 3 + 6 H 2 O ⟶ [ A l ( H 2 O ) 6 ] ( a q ) 3 + + 3 C l ( a q ) − , [ A l ( H 2 O ) 6 ] ( a q ) 3 + ⟶ [ A l ( H 2 O ) 5 O H ] ( a q ) 2 + + H ( a q ) + [Al(H_2O)_6]^{3+}_{(aq)} \longrightarrow [Al(H_2O)_5OH]^{2+}_{(aq)} + H^+_{(aq)}[ A l ( H 2 O ) 6 ] ( a q ) 3 + ⟶ [ A l ( H 2 O ) 5 O H ] ( a q ) 2 + + H ( a q ) + (pH = 3)
S i C l 4 + 2 H 2 O ⟶ S i O 2 + 4 H C l SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HClS i C l 4 + 2 H 2 O ⟶ S i O 2 + 4 H Cl (pH = 1-2, white ppt)
P C l 3 + 3 H 2 O ⟶ 3 H C l + H 3 P O 3 PCl_3 + 3H_2O \longrightarrow 3HCl + H_3PO_3PC l 3 + 3 H 2 O ⟶ 3 H Cl + H 3 P O 3 (pH = 1-2)
P C l 5 + 4 H 2 O ⟶ 5 H C l + H 3 P O 4 PCl_5 + 4H_2O \longrightarrow 5HCl + H_3PO_4PC l 5 + 4 H 2 O ⟶ 5 H Cl + H 3 P O 4 (pH = 1-2)
S 2 C l 2 + 2 H 2 O ⟶ H 2 S + S O 2 + 2 H C l S_2Cl_2 + 2H_2O \longrightarrow H_2S + SO_2 + 2HClS 2 C l 2 + 2 H 2 O ⟶ H 2 S + S O 2 + 2 H Cl (pH = 1-2)
Important Reaction:
C l 2 + H 2 O ⇌ H C l + H O C l Cl_2 + H_2O \rightleftharpoons HCl + HOClC l 2 + H 2 O ⇌ H Cl + H OCl
2 H O C l ⇌ 2 H C l + O 2 2HOCl \rightleftharpoons 2HCl + O_22 H OCl ⇌ 2 H Cl + O 2
Group 2 Reactions
Combustion of Group 2 metals:
2 M g + O 2 ⟶ 2 M g O 2Mg + O_2 \longrightarrow 2MgO2 M g + O 2 ⟶ 2 M g O (Intense white flame)
2 C a + O 2 ⟶ 2 C a O 2Ca + O_2 \longrightarrow 2CaO2 C a + O 2 ⟶ 2 C a O (Brick red flame)
2 S r + O 2 ⟶ 2 S r O 2Sr + O_2 \longrightarrow 2SrO2 S r + O 2 ⟶ 2 S r O (Crimson flame)
2 B a + O 2 ⟶ 2 B a O 2Ba + O_2 \longrightarrow 2BaO2 B a + O 2 ⟶ 2 B a O (Apple green flame)
Reaction of Group 2 Oxides with water:
M g O + H 2 O ⟶ M g ( O H ) 2 MgO + H_2O \longrightarrow Mg(OH)_2M g O + H 2 O ⟶ M g ( O H ) 2 (pH = 9)
C a O + H 2 O ⟶ C a ( O H ) 2 CaO + H_2O \longrightarrow Ca(OH)_2C a O + H 2 O ⟶ C a ( O H ) 2 (pH = 11)
S r O + H 2 O ⟶ S r ( O H ) 2 SrO + H_2O \longrightarrow Sr(OH)_2S r O + H 2 O ⟶ S r ( O H ) 2 (pH = 13)
B a O + H 2 O ⟶ B a ( O H ) 2 BaO + H_2O \longrightarrow Ba(OH)_2B a O + H 2 O ⟶ B a ( O H ) 2 (pH = 13)
Note: Solubility of Group 2 hydroxides increases down the group
Reaction of Group 2 Oxides with Acids:
M g O + H 2 S O 4 ⟶ M g S O 4 + H 2 O MgO + H_2SO_4 \longrightarrow MgSO_4 + H_2OM g O + H 2 S O 4 ⟶ M g S O 4 + H 2 O (M g S O 4 MgSO_4M g S O 4 is soluble)
C a O + H 2 S O 4 ⟶ C a S O 4 + H 2 O CaO + H_2SO_4 \longrightarrow CaSO_4 + H_2OC a O + H 2 S O 4 ⟶ C a S O 4 + H 2 O
S r O + H 2 S O 4 ⟶ S r S O 4 + H 2 O SrO + H_2SO_4 \longrightarrow SrSO_4 + H_2OS r O + H 2 S O 4 ⟶ S r S O 4 + H 2 O
B a O + H 2 S O 4 ⟶ B a S O 4 + H 2 O BaO + H_2SO_4 \longrightarrow BaSO_4 + H_2OB a O + H 2 S O 4 ⟶ B a S O 4 + H 2 O (B a S O 4 BaSO_4B a S O 4 is a white precipitate)
Note: Solubility of Group 2 sulfates decreases down the group
Decomposition of Group 2 Nitrates:
M g ( N O 3 ) 2 ⟶ M g O + 2 N O 2 + 1 2 O 2 Mg(NO_3)_2 \longrightarrow MgO + 2NO_2 + \frac{1}{2}O_2M g ( N O 3 ) 2 ⟶ M g O + 2 N O 2 + 2 1 O 2
C a ( N O 3 ) 2 ⟶ C a O + 2 N O 2 + 1 2 O 2 Ca(NO_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2C a ( N O 3 ) 2 ⟶ C a O + 2 N O 2 + 2 1 O 2
S r ( N O 3 ) 2 ⟶ S r O + 2 N O 2 + 1 2 O 2 Sr(NO_3)_2 \longrightarrow SrO + 2NO_2 + \frac{1}{2}O_2S r ( N O 3 ) 2 ⟶ S r O + 2 N O 2 + 2 1 O 2
B a ( N O 3 ) 2 ⟶ B a O + 2 N O 2 + 1 2 O 2 Ba(NO_3)_2 \longrightarrow BaO + 2NO_2 + \frac{1}{2}O_2B a ( N O 3 ) 2 ⟶ B a O + 2 N O 2 + 2 1 O 2
N O 2 NO_2N O 2 is a brown gas.
Decomposition of Group 2 Carbonates:
M g C O 3 ⟶ M g O + C O 2 MgCO_3 \longrightarrow MgO + CO_2M g C O 3 ⟶ M g O + C O 2
C a C O 3 ⟶ C a O + C O 2 CaCO_3 \longrightarrow CaO + CO_2C a C O 3 ⟶ C a O + C O 2
S r C O 3 ⟶ S r O + C O 2 SrCO_3 \longrightarrow SrO + CO_2S r C O 3 ⟶ S r O + C O 2
B a C O 3 ⟶ B a O + C O 2 BaCO_3 \longrightarrow BaO + CO_2B a C O 3 ⟶ B a O + C O 2
Flue Gas Desulfurization:
S O 2 + C a O ⟶ C a S O 3 SO_2 + CaO \longrightarrow CaSO_3S O 2 + C a O ⟶ C a S O 3
C a S O 3 → F u r t h e r o x i d a t i o n C a S O 4 CaSO_3 \xrightarrow{Further \ oxidation} CaSO_4C a S O 3 F u r t h er o x i d a t i o n C a S O 4
Limewater Test:
C a ( O H ) 2 + C O 2 ⟶ C a C O 3 + H 2 O Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2OC a ( O H ) 2 + C O 2 ⟶ C a C O 3 + H 2 O (White precipitate)
C a C O 3 + H 2 O + C O 2 ⟶ C a ( H C O 3 ) 2 CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2C a C O 3 + H 2 O + C O 2 ⟶ C a ( H C O 3 ) 2 (C a ( H C O 3 ) 2 Ca(HCO_3)_2C a ( H C O 3 ) 2 dissolves in water, so the precipitate disappears with further oxidation)
Reaction of Group 2 metals with water and steam
C a + 2 H 2 O ( l ) ⟶ C a ( O H ) 2 + H 2 Ca + 2H_2O_{(l)} \longrightarrow Ca(OH)_2 + H_2C a + 2 H 2 O ( l ) ⟶ C a ( O H ) 2 + H 2 (Calcium sinks in water)
C a + H 2 O ( g ) ⟶ C a O + H 2 Ca + H_2O_{(g)} \longrightarrow CaO + H_2C a + H 2 O ( g ) ⟶ C a O + H 2
Sulfur and Nitrogen
Formation of N O x NO_xN O x :
N 2 + O 2 ⟶ 2 N O N_2 + O_2 \longrightarrow 2NON 2 + O 2 ⟶ 2 NO (Intense heat caused by lightning, catalytic converters, and volcanoes)
2 N O + O 2 ⟶ 2 N O 2 2NO + O_2 \longrightarrow 2NO_22 NO + O 2 ⟶ 2 N O 2 (N O 2 NO_2N O 2 is highly unstable)
Formation of Acid Rain:
2 N O 2 + H 2 O ⟶ H N O 3 + H N O 2 2NO_2 + H_2O \longrightarrow HNO_3 + HNO_22 N O 2 + H 2 O ⟶ H N O 3 + H N O 2
H N O 2 + 1 2 O 2 ⟶ H N O 3 HNO_2 + \frac{1}{2}O_2 \longrightarrow HNO_3H N O 2 + 2 1 O 2 ⟶ H N O 3
2 N O 2 + H 2 O + 1 2 O 2 ⟶ 2 H N O 3 2NO_2 + H_2O + \frac{1}{2}O_2 \longrightarrow 2HNO_32 N O 2 + H 2 O + 2 1 O 2 ⟶ 2 H N O 3 (Nitric Acid)
S O 2 + H 2 O ⟶ H 2 S O 3 SO_2 + H_2O \longrightarrow H_2SO_3S O 2 + H 2 O ⟶ H 2 S O 3 (Sulfurous Acid)
Dangerous Gases formed in Car Engines:
S O 2 + N O 2 ⟶ S O 3 + N O SO_2 + NO_2 \longrightarrow SO_3 + NOS O 2 + N O 2 ⟶ S O 3 + NO
N O + 1 2 O 2 ⟶ N O 2 NO + \frac{1}{2}O_2 \longrightarrow NO_2NO + 2 1 O 2 ⟶ N O 2 (Regenerated)
S O 3 + H 2 O ⟶ H 2 S O 4 SO_3 + H_2O \longrightarrow H_2SO_4S O 3 + H 2 O ⟶ H 2 S O 4
Reaction in Rain Clouds: See Formation of Acid Rain
Catalytic Converters:
Conditions: Pt/Pd as catalyst at 200°C, honeycomb ceramic surface
Increases surface area
Withstand high temperatures
2 N O ⟶ N 2 + 2 C O 2 2NO \longrightarrow N_2 + 2CO_22 NO ⟶ N 2 + 2 C O 2
2 C O + O 2 ⟶ 2 C O 2 2CO + O_2 \longrightarrow 2CO_22 CO + O 2 ⟶ 2 C O 2
C 8 H 18 + 12.5 O 2 ⟶ 8 C O 2 + 9 H 2 O C_8H_{18} + 12.5O_2 \longrightarrow 8CO_2 + 9H_2OC 8 H 18 + 12.5 O 2 ⟶ 8 C O 2 + 9 H 2 O
Flue Gas Desulfurization: (See Group 2 reactions)
Natural Ozone Reactions:
O 2 → U V L i g h t 2 O ˙ O_2 \xrightarrow{UV \ Light} 2\dot{O}O 2 U V L i g h t 2 O ˙
O 2 + O ˙ ⟶ O 3 O_2 + \dot{O} \longrightarrow O_3O 2 + O ˙ ⟶ O 3
O 3 → U V L i g h t O 2 + O ˙ O_3 \xrightarrow{UV \ Light} O_2 + \dot{O}O 3 U V L i g h t O 2 + O ˙
Disrupted Ozone Reactions:
C l 2 → U V L i g h t 2 C l ⋅ Cl_2 \xrightarrow{UV \ Light} 2Cl\cdotC l 2 U V L i g h t 2 Cl ⋅
C l ⋅ + O 3 ⟶ C l O ⋅ + O 2 Cl\cdot + O_3 \longrightarrow ClO\cdot + O_2Cl ⋅ + O 3 ⟶ ClO ⋅ + O 2
C l O ⋅ + O 3 ⟶ C l ⋅ + 2 O 2 ClO\cdot + O_3 \longrightarrow Cl\cdot + 2O_2ClO ⋅ + O 3 ⟶ Cl ⋅ + 2 O 2 (Regenerated)
Ammonia as a Base:
N H 3 + H C l ⟶ N H 4 C l NH_3 + HCl \longrightarrow NH_4ClN H 3 + H Cl ⟶ N H 4 Cl
2 N H 3 + H 2 S O 4 ⟶ ( N H 4 ) 2 S O 4 2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_42 N H 3 + H 2 S O 4 ⟶ ( N H 4 ) 2 S O 4
N H 3 + H N O 3 ⟶ N H 4 N O 3 NH_3 + HNO_3 \longrightarrow NH_4NO_3N H 3 + H N O 3 ⟶ N H 4 N O 3
N H 4 C l + N a O H ⟶ N a C l + N H 3 + H 2 O NH_4Cl + NaOH \longrightarrow NaCl + NH_3 + H_2ON H 4 Cl + N a O H ⟶ N a Cl + N H 3 + H 2 O
( N H 4 ) 2 S O 4 + 2 N a O H ⟶ N a 2 S O 4 + 2 N H 3 + 2 H 2 O (NH_4)_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2NH_3 + 2H_2O( N H 4 ) 2 S O 4 + 2 N a O H ⟶ N a 2 S O 4 + 2 N H 3 + 2 H 2 O
N H 4 N O 3 + N a O H ⟶ N a N O 3 + N H 3 + H 2 O NH_4NO_3 + NaOH \longrightarrow NaNO_3 + NH_3 + H_2ON H 4 N O 3 + N a O H ⟶ N a N O 3 + N H 3 + H 2 O
Alcohols
Preparation of Alcohols: Hydration of Alkenes, Nucleophilic Substitution of Alkyl Halides, Reduction of Carbonyl Compounds, Reduction of Carboxylic Acids, Hydrolysis of Esters, Fermentation of Glucose
C 6 H 12 O 6 → 38 ∘ C , n o a i r , s t e a m , Y e a s t 2 C 2 H 5 O H + 2 C O 2 C_6H_{12}O_6 \xrightarrow{38^\circ C, \ no \ air, \ steam, \ Yeast} 2C_2H_5OH + 2CO_2C 6 H 12 O 6 3 8 ∘ C , n o ai r , s t e am , Y e a s t 2 C 2 H 5 O H + 2 C O 2
Nucleophilic Substitution by HBr:
C H 3 C H 2 O H + H B r ⟶ C H 3 C H 2 B r + H 2 O CH_3CH_2OH + HBr \longrightarrow CH_3CH_2Br + H_2OC H 3 C H 2 O H + H B r ⟶ C H 3 C H 2 B r + H 2 O (HBr is toxic) *Mechanism: See source for a diagram of the mechanism.
Nucleophilic Substitution by Chlorination:
3 C H 3 C H 2 O H + P C l 3 ⟶ 3 C H 3 C H 2 C l + H 3 P O 3 3CH_3CH_2OH + PCl_3 \longrightarrow 3CH_3CH_2Cl + H_3PO_33 C H 3 C H 2 O H + PC l 3 ⟶ 3 C H 3 C H 2 Cl + H 3 P O 3 (Heat with P C l 3 PCl_3PC l 3 )
C H 3 C H 2 O H + P C l 5 ⟶ C H 3 C H 2 C l + P O C l 3 + H C l CH_3CH_2OH + PCl_5 \longrightarrow CH_3CH_2Cl + POCl_3 + HClC H 3 C H 2 O H + PC l 5 ⟶ C H 3 C H 2 Cl + POC l 3 + H Cl (Reaction at r.t.p with P C l 5 PCl_5PC l 5 )
White fumes of HCl observed
C H 3 C H 2 O H + S O C l 2 ⟶ C H 3 C H 2 C l + H C l + S O 2 CH_3CH_2OH + SOCl_2 \longrightarrow CH_3CH_2Cl + HCl + SO_2C H 3 C H 2 O H + SOC l 2 ⟶ C H 3 C H 2 Cl + H Cl + S O 2 (Heat S O C l 2 SOCl_2SOC l 2 with pyridine as solvent, white fumes observed. Bleaches litmus paper)
Dehydration of Alcohols:
C H 3 C H 2 O H → 180 ∘ C , H 2 S O 4 c a t a l y s t , H e a t C H 2 = C H 2 + H 2 O CH_3CH_2OH \xrightarrow{180^\circ C, H_2SO_4 \ catalyst, \ Heat} CH_2=CH_2 + H_2OC H 3 C H 2 O H 18 0 ∘ C , H 2 S O 4 c a t a l ys t , He a t C H 2 = C H 2 + H 2 O *Mechanism: See source for a diagram of the mechanism.
Oxidation of Alcohols: *Conditions: Acidified K 2 C r 2 O 7 K_2Cr_2O_7K 2 C r 2 O 7 or K M n O 4 KMnO_4K M n O 4 , Heat
Primary Alcohol: C H 3 C H 2 O H → D i s t i l l a t i o n C H 3 C H O → F u r t h e r o x i d a t i o n C H 3 C O 2 H CH_3CH_2OH \xrightarrow{Distillation} CH_3CHO \xrightarrow{Further \ oxidation} CH_3CO_2HC H 3 C H 2 O H D i s t i ll a t i o n C H 3 C H O F u r t h er o x i d a t i o n C H 3 C O 2 H (Heat under reflux)
Secondary Alcohol: C H 3 C H ( O H ) C H 3 ⟶ C H 3 C O C H 3 CH_3CH(OH)CH_3 \longrightarrow CH_3COCH_3C H 3 C H ( O H ) C H 3 ⟶ C H 3 COC H 3 (Forms Ketone)
Tertiary Alcohol: No reaction
Reaction with Metals:
C H 3 C H 2 O H + N a ⟶ C H 3 C H 2 O N a + 1 2 H 2 CH_3CH_2OH + Na \longrightarrow CH_3CH_2ONa + \frac{1}{2}H_2C H 3 C H 2 O H + N a ⟶ C H 3 C H 2 ON a + 2 1 H 2
Reaction with Acids:
C H 3 C H 2 O H + C H 3 C H 2 O H → C o n c . H 2 S O 4 C H 3 C H 2 O C H 2 C H 3 + H 2 O CH_3CH_2OH + CH_3CH_2OH \xrightarrow{Conc. \ H_2SO_4} CH_3CH_2OCH_2CH_3 + H_2OC H 3 C H 2 O H + C H 3 C H 2 O H C o n c . H 2 S O 4 C H 3 C H 2 OC H 2 C H 3 + H 2 O
Combustion:
Complete: C H 3 C H 2 O H + 3 O 2 ⟶ 2 C O 2 + 3 H 2 O CH_3CH_2OH + 3O_2 \longrightarrow 2CO_2 + 3H_2OC H 3 C H 2 O H + 3 O 2 ⟶ 2 C O 2 + 3 H 2 O
Incomplete: C H 3 C H 2 O H + 2 O 2 ⟶ 2 C O + 3 H 2 O CH_3CH_2OH + 2O_2 \longrightarrow 2CO + 3H_2OC H 3 C H 2 O H + 2 O 2 ⟶ 2 CO + 3 H 2 O and C H 3 C H 2 O H + O 2 ⟶ 2 C + 3 H 2 O CH_3CH_2OH + O_2 \longrightarrow 2C + 3H_2OC H 3 C H 2 O H + O 2 ⟶ 2 C + 3 H 2 O
Lucas Test:
C H 3 C H 2 O H + H C l → Z n C l 2 , H e a t C H 3 C H 2 C l + H 2 O CH_3CH_2OH + HCl \xrightarrow{ZnCl_2, Heat} CH_3CH_2Cl + H_2OC H 3 C H 2 O H + H Cl Z n C l 2 , He a t C H 3 C H 2 Cl + H 2 O
Observations:
Primary Alcohol: No cloudiness until strong heating
Secondary Alcohol: Cloudiness in 5 minutes
Tertiary Alcohol: Immediate cloudiness
Carbonyl Compounds
Formation of Carbonyl Compounds : Oxidation of Alcohols
Nucleophilic Addition of HCN:
C H 3 C H O + H C N → T r a c e a m o u n t s o f N a C N C H 3 C H ( O H ) ( C N ) CH_3CHO + HCN \xrightarrow{Trace \ amounts \ of \ NaCN} CH_3CH(OH)(CN)C H 3 C H O + H CN T r a ce am o u n t s o f N a CN C H 3 C H ( O H ) ( CN ) *Mechanism: See source for a diagram of the mechanism.
Reduction of Carbonyl Compounds
Reagents: N a B H 4 NaBH_4N a B H 4 in H 2 O H_2OH 2 O , L i A l H 4 LiAlH_4L i A l H 4 in dry ether, N a ( s ) Na_{(s)}N a ( s ) in ethanol
Aldehydes: C H 3 C H O + [ H ] ⟶ C H 3 C H 2 O H CH_3CHO + [H] \longrightarrow CH_3CH_2OHC H 3 C H O + [ H ] ⟶ C H 3 C H 2 O H (Forms Primary Alcohol)
Ketones: C H 3 C O C H 3 + [ H ] ⟶ C H 3 C H ( O H ) C H 3 CH_3COCH_3 + [H] \longrightarrow CH_3CH(OH)CH_3C H 3 COC H 3 + [ H ] ⟶ C H 3 C H ( O H ) C H 3 (Forms Secondary Alcohol)
Condensation Reactions of Carbonyl Compounds:
Reagent: 2,4-DNPH
Observation: Initial - Yellow or orange solution, Final - Yellow or orange precipitate
See source for a diagram of the reaction mechanism.
Nitrile Reactions:
Hydrolysis : C H 3 C H ( C N ) O H → D i l u t e H C l , H e a t u n d e r r e f l u x C H 3 C H ( C O O H ) O H CH_3CH(CN)OH \xrightarrow{Dilute \ HCl, Heat \ under \ reflux} CH_3CH(COOH)OHC H 3 C H ( CN ) O H D i l u t e H Cl , He a t u n d er re f l ux C H 3 C H ( COO H ) O H (Lactic Acid)
Reduction : C H 3 C H ( C N ) O H → N a ( s ) i n e t h a n o l C H 3 C H ( C H 2 N H 2 ) O H CH_3CH(CN)OH \xrightarrow{Na_{(s)} \ in \ ethanol} CH_3CH(CH_2NH_2)OHC H 3 C H ( CN ) O H N a ( s ) in e t han o l C H 3 C H ( C H 2 N H 2 ) O H
Tollen's Test:
Example Reagent: Aldehyde (C H 3 C H O CH_3CHOC H 3 C H O )
Output: C H 3 C O O H + 2 A g CH_3COOH + 2AgC H 3 COO H + 2 A g (Silver mirror forms if the test is positive)
A silver mirror is formed only if the reagent is an aldehyde
Fehling's Test:
Testing Reagent: Copper (II) Tartarate in alkaline solution (Light blue solution)
Example Reagent: Aldehyde (C H 3 C H O CH_3CHOC H 3 C H O )
Output: C H 3 C O 2 H + C u 2 O CH_3CO_2H + Cu_2OC H 3 C O 2 H + C u 2 O (Brick-red precipitate)
A brick-red precipitate is formed only if the reagent is an aldehyde
Carboxylic Acids
Formation of Carboxylic Acids: Oxidation of Primary Alcohols, Oxidation of Aldehydes, Hydrolysis of Esters (Acidic Hydrolysis), Hydrolysis of Nitriles
Reaction with Metals:
C H 3 C O 2 H + N a ⟶ C H 3 C O 2 N a + 1 2 H 2 CH_3CO_2H + Na \longrightarrow CH_3CO_2Na + \frac{1}{2}H_2C H 3 C O 2 H + N a ⟶ C H 3 C O 2 N a + 2 1 H 2
Reaction with Carbonates:
2 C H 3 C O 2 H + N a 2 C O 3 ⟶ 2 C H 3 C O 2 N a + C O 2 + H 2 O 2CH_3CO_2H + Na_2CO_3 \longrightarrow 2CH_3CO_2Na + CO_2 + H_2O2 C H 3 C O 2 H + N a 2 C O 3 ⟶ 2 C H 3 C O 2 N a + C O 2 + H 2 O
Reaction with Bases:
C H 3 C O 2 H + N a O H ⟶ C H 3 C O 2 N a + H 2 O CH_3CO_2H + NaOH \longrightarrow CH_3CO_2Na + H_2OC H 3 C O 2 H + N a O H ⟶ C H 3 C O 2 N a + H 2 O
Reactions with Alcohols (Esterification)
C H 3 C O 2 H + C H 3 C H 2 O H → C o n c . H 2 S O 4 c a t a l y s t C H 3 C O 2 C H 2 C H 3 + H 2 O CH_3CO_2H + CH_3CH_2OH \xrightarrow{Conc. \ H_2SO_4 \ catalyst} CH_3CO_2CH_2CH_3 + H_2OC H 3 C O 2 H + C H 3 C H 2 O H C o n c . H 2 S O 4 c a t a l ys t C H 3 C O 2 C H 2 C H 3 + H 2 O
Reduction
C H 3 C O 2 H + 4 [ H ] → L i A l H 4 i n d r y e t h e r C H 3 C H 2 O H + H 2 O CH_3CO_2H + 4[H] \xrightarrow{LiAlH_4 \ in \ dry \ ether} CH_3CH_2OH + H_2OC H 3 C O 2 H + 4 [ H ] L i A l H 4 in d ry e t h er C H 3 C H 2 O H + H 2 O
Reaction with Chlorinating Agents:
C H 3 C O 2 H + S O C l 2 ⟶ C H 3 C O C l + S O 2 + H C l CH_3CO_2H + SOCl_2 \longrightarrow CH_3COCl + SO_2 + HClC H 3 C O 2 H + SOC l 2 ⟶ C H 3 COCl + S O 2 + H Cl
C H 3 C O 2 H + P C l 5 ⟶ C H 3 C O C l + P O C l 3 + H C l CH_3CO_2H + PCl_5 \longrightarrow CH_3COCl + POCl_3 + HClC H 3 C O 2 H + PC l 5 ⟶ C H 3 COCl + POC l 3 + H Cl
Hydrolysis of Esters:
Acidic: C H 3 C O 2 C H 2 C H 3 → D i l u t e H C l , H e a t U n d e r R e f l u x C H 3 C O 2 H + C H 3 C H 2 O H CH_3CO_2CH_2CH_3 \xrightarrow{Dilute \ HCl, Heat \ Under \ Reflux} CH_3CO_2H + CH_3CH_2OHC H 3 C O 2 C H 2 C H 3 D i l u t e H Cl , He a t U n d er R e f l ux C H 3 C O 2 H + C H 3 C H 2 O H
Alkaline: C H 3 C O 2 C H 2 C H 3 → N a O H ( a q ) , R o o m T e m p e r a t u r e C H 3 C O 2 N a + C H 3 C H 2 O H CH_3CO_2CH_2CH_3 \xrightarrow{NaOH(aq), Room \ Temperature} CH_3CO_2Na + CH_3CH_2OHC H 3 C O 2 C H 2 C H 3 N a O H ( a q ) , R oo m T e m p er a t u re C H 3 C O 2 N a + C H 3 C H 2 O H
Iodoform Test
Reagent: Iodine in alkaline solution with heat provided
Test is positive for: Substances with a C H 3 − C ( = O ) − R CH_3-C(=O)-RC H 3 − C ( = O ) − R structure, and Alcohols that oxidize to form